

MODULAR PROGRAMME

ASSESSMENT SPECIFICATION

Module Details
Module Code
UFEEHJ-30-2

Run
08SEP/1 AY

Module Title
Operating Systems and Systems Administration

Module Leader
Ian Johnson

Module Tutors
Nigel Gunton, Ian Johnson

Component and Element Number
B2

Weighting: (% of the Module's assessment)
25%

Element Description
Coursework - 2

Total Assignment time
18 hours

Dates
Date Issued to Students
23/02/09

Date to be Returned to Students
5th May 2009

Submission Date
2nd April 2009

Submission Place

PROJECT ROOM - 2Q30
(Help Desk open 9.00 - 6.00pm) Submission Time

2.00 pm

Deliverables
As per attached specification

Module Leader Signature

 Ian Johnson

You May Work Either Individually or In Pairs
For This Assignment

Requirements

The design and development of an RFC2324 compliant Coffee Pot Server.

Most modern applications include network or Internet connectivity. In order to gain a
better understanding of the role of an operating system and networking software in
supporting such applications, you are to design and implement a standards compliant
server and a client. This will support HTCPCP, the Hyper-Text Coffee-Pot Control
Protocol. This protocol is designed to allow the remote control of coffee brewing
machines via the internet. An HTCPCP server accepts requests from remote clients
and uses these requests to manage the coffee machine. The server provides responses
based on the status of the coffee brewing machine.

In order to achieve this you will need to :-

1. Read and understand RFC2324. This provides an introduction to RFCs
(Request For Comments). RFCs are the standards documents of the Internet,
all key protocols are described and defined in them. Networking software is
required to comply with the defined standards if it is to interact correctly with
other software using the same protocols. Note that, as with all protocols during
their development phase, their are some ambiguities in RFC2324. It is up to
you to recognize and interpret these ambiguities and omissions in such a way
that reflects your understanding of the intent of RFC2324. This should be
documented as the first part of the deliverables. Credit will be given for the
quality of decisions made at this stage.

2. Compare the set of request messages and responses provided below, in BNF,

with the written descriptions shown in RFC2324. Decide which of this set of
messages and responses should be generated by the client and which by the
server. These messages will be encapsulated within HTTP and should include
any extensions to HTTP that may be required at both client and server end.
Your decisions and modifications should be documented and again credit will
be given for the standard of your documentation.

3. Develop a full top-level finite state design for both the client and the server.

Please note that the most complex areas are:
• Parsing user input in the client and constructing a valid request.

• Parsing the request message in the server and building an appropriate

response.

Your design MUST show how you undertake the parsing.

Implement the design using C or if you wish C++. You will be expected to use the
code examples provided, it will be up to you to decide which of the examples are the
most appropriate. These are all available via the links on the modules web-page
http://www.cems.uwe.ac.uk/~irjohnso. Note that these pages are only available on-
site. The majority of examples are in C. If you use code from other sources then it
must be clearly identified as such and you must be able to explain its functionality to
your lab tutor.

Note that in the absence of a coffee machine you will have to simulate it by either

 a) implementing variables in the server to represent the coffee machine status

 or

 b) reading and writing to a file holding the coffee machine status

 or

 c) implementing a coffee machine which is controlled by the server

Note

Your coffee-pot server is not required to provide all additions but must recognize the
additions list and respond with an appropriate message.

Deliverables:

You must include in your assignment machine readable source code on either
floppy disk or CD. Be warned, plagiarism detection software may be used to
detect overly similar work.

1) A short (< 500 words) description in your own words that shows your
understanding of RFC2324. 0% to 10%.

2) Documentation describing the messages and responses of your system. 0% to
10%

3) Your design(s). 0% to 30%

4) Your code for the client and the server. This must be signed and dated by your lab
tutor to whom it must have been demonstrated successfully. The lab tutor must
indicate the degree to which s/he considers it to have met the requirements. 0% to
30%

You may wish to demonstrate the following stages :-

• A stand-alone client with user input from the keyboard and output to the
screen.

• A stand-alone server with input from either the keyboard or a file and
output to the screen or to a file.

• The combination of your client and server. The server should print out the
request message and the client should print out the response message.

Alternatively, you can demonstrate the finished system, provided it works!

A further 20% is available for quality of design or quality of code or for
demonstrating your client/server against a third party client/server. Factors to be
considered will include clarity of the design, the degree to which the
design matches the code, commenting, robustness and testing. In addition marks in
this section may be awarded for extending the assignment specification through for
example, implementing a multithreaded server, or a GUI front-end as an optional
interface to your client. Such extensions should be agreed in advance with your lab
tutor.

Note that the overall quality of the documentation that you hand in will affect the
mark allocated. Spelling, layout, code comments etc are all important.

Code printed so that it is difficult to read, truncated by the edge of the page etc will
lose you marks!

Useful Suggested BNF

coffee-url = "coffee" ":" ["//" host] ["/" pot-designator] ["?" additions-list]

pot-designator = "pot-" integer ; for machines with multiple pots
 additions-list = #(addition)

HTCPCP-message = Request | Response ; HTCPCP/0.1 messages

 generic-message = start-line
 *(message-header CRLF)
 CRLF
 [message-body]

 start-line = Request-Line | Status-Line
 message-header = field-name ":" [field-value]
 field-name = token
 field-value = *(field-content | LWS)
 field-content = <the OCTETs making up the field-value
 and consisting of either *TEXT or combinations
 of token, separators, and quoted-string>

 message-body = entity-body

 Method = "PROPFIND" ; Section 2.1.3
 | "GET" ; Section 2.1.2
 | "BREW" ; Section 2.1.1
 | "POST" ; Section 2.1.1
 | "WHEN" ; Section 2.1.4
 | extension-method

 extension-method = token

 Request = Request-Line
 *((request-header
 | entity-header) CRLF)
 CRLF
 [message-body]

 Request-Line = Method SP Request-URI SP HTCPCP-Version CRLF

 Request-URI = "*" | absoluteURI | abs_path | authority

 request-header = Accept-Additions ; Section 2.2.2.1
 | Safe-Condition ; Section 2.2.1.1

Server responses

 Response = Status-Line
 *((response-header
 | entity-header) CRLF)
 CRLF
 [message-body]

Status-Line = HTCPCP-Version SP Status-Code SP Reason-Phrase CRLF

 The first digit of the Status-Code defines the class of response. The
 last two digits do not have any categorization role. There are 5
 values for the first digit:

 o 1xx: Informational - Request received, continuing process
 o 2xx: Success - The action was successfully received, understood,
 and accepted
 o 3xx: Redirection - Further action must be taken in order to
 complete the request
 o 4xx: Client Error - The request contains bad syntax or cannot be
 fulfilled
 o 5xx: Server Error - The server failed to fulfill an apparently
 valid request

 Status-Code = "100" ; Continue
 | "200" ; OK
 | "400" ; Bad Request
 | "401" ; Unauthorized
 | "402" ; Payment Required
 | "403" ; Forbidden
 | "404" ; Not Found
 | "406" ; Not Acceptable
 | "410" ; Gone
 | "501" ; Not Implemented
 | "503" ; Service Unavailable

 response-header = Age
 | Retry-After
 | Safe

 entity-header = Accept-Additions

 Retry-After = "Retry-After" ":" (HTTP-date | delta-seconds)
 Safe = "Safe" ":" safe-nature
 safe-nature = "yes" | "no" | conditionally-safe
 conditionally-safe = "if-" safe-condition
 safe-condition = "user-awake" | token

Entity Body

 entity-body := Content-Encoding(Content-Type(data))

 The entity body of a POST or BREW request MUST be of Content-Type
 "message/coffeepot". Since most of the information for controlling
 the coffee pot is conveyed by the additional headers, the content of
 "message/coffeepot" contains only a coffee-message-body:

 coffee-message-body = "start" | "stop"

Accept-Additions header field

 Accept-Additions = "Accept-Additions" ":"
 "#"(addition-type [accept-params])

 addition-type = ("*"
 | milk-type
 | syrup-type
 | sweetener-type
 | spice-type
 | alcohol-type
) * (";" parameter)

 milk-type = ("Cream" | "Half-and-half"
 |"Whole-milk" | "Part-skim"
 |"Skim" | "Non-dairy")

 syrup-type = ("Vanilla" | "Almond" | "Raspberry")

 sweetener-type = ("White-sugar" | "Sweetener"
 |"Raw-cane" | "Honey")

 spice-type = ("Cinnamon" | "Cardamon")

 alcohol-type = ("Brandy" | "Rum" | "Whiskey"
 | "Aquavit" | "Kahlua")

 parameter = number | volume

 number = ("1"|"2"|"3"|"4"|"5")
 volume = ("dash"|"splash"|"little"|"medium"|"lots")

Safe-Condition header field
 Safe-Condition = ("user-awake" | token)

