
1 of 9
October 2008 UFEEHJ-30-2

MODULAR PROGRAMME

ASSESSMENT SPECIFICATION

Module Details

Module Code
UFEEHJ-30-2

Run
08SEP/1 AY

Module Title
Operating Systems and Systems
Administration

Module Leader
Ian Johnson

Module Tutors
Nigel Gunton, Ian Johnson

Component and Element Number
B1

Weighting: (% of the Module's
assessment)
25%

Element Description
Coursework - 1

Total Assignment time
18 hours + Lab Time

Dates

Date Issued to Students
15 th October 2008

Date to be Returned to Students
21st January 2009

Submission Date
11th December 2008

Submission Place
PROJECT ROOM - 2Q30
(Help Desk open 9.00 - 6.00pm)

Submission Time
2.00 pm

Deliverables

As per attached specification

Module Leader Signature

 Ian Johnson

2 of 9
October 2008 UFEEHJ-30-2

Overview

Even in these days of Graphical User Interfaces (GUIs) most modern operating systems
still offer a command line interpreter, or shell. Many systems administrators are
frequent users of command line interfaces, even on Windows XP!

From a learning point of view, command-line interfaces provide an opportunity to study
the underlying operating system calls and to this end you will be developing a simple,
restricted shell.

This assignment will be developed in stages and signed off by your lab tutor as you
proceed.

You will be expected to work on this during your lab sessions AND in your own
time.

Requirements

To develop the following elements, initially as stand-alone programs, and then to
combine them into a simple shell. It will pay to think ahead and to consider functions
that will be common to all/many of the stand-alone versions. Your shell should provide
a prompt, error/usage messages for the built-ins and pass other commands to the
underlying system for execution.

Note:

• Credit will be awarded for the use of version control. A worksheet on using
version control software is available on Nigel Gunton's web page.

• Credit will be awarded for robust error checking and the use of perror()

The elements required for this assignment together with the available marks are listed
overleaf:

IMPORTANT!!

For fairness, and to encourage you to work consistently lab
tutors have been advised to sign off one category of work at a
time for each student. This is to ensure that everyone can be
seen in a lab session. No sign-offs will be performed outside

of scheduled classes.

IT IS YOUR RESPONSIBILITY TO ENSURE YOU ALLOW
ADEQUATE TIME TO DEMONSTRATE YOUR WORK AND TO DO

SO ON A WEEK BY WEEK BASIS

3 of 9
October 2008 UFEEHJ-30-2

a. pwd
This should print, on stdout, the path to the current directory.

(4 marks)

b. cd
This should take an optional path as an argument. If no argument is provided
then the default behaviour is to change directory to the users home directory.

(6 marks)

c. ls
The 'list directory contents' command. It should accept the flags –a and –l and
respond appropriately. RTFM for exact details. This component of the assignment
has two parts, a written description of the issues involved and your actual code
and demonstration.

In general, the ls component of this assignment has been poorly executed.
On Kenny a test directory exists. Your ls MUST be able to process this directory
correctly:

This directory highlights most issues with respect to ls. Some key issues are:

• unresolvable UID/GID
• “unusual” permissions e.g. sticky, suid, sgid
• “unusual” types e.g. pipes, links and devices.
• unresolvable links.

You should make sure you are clear about the issues involved in dealing with
these particular points, and any other issues involved in handling this directory,
before starting on this component.

In particular the following points should be noted:

• links should be handled corrected in long format e.g.
4 lrwxrwxrwx 1 user users 4 Oct 17 17:24 link -> f ile
The date stamp should be the mod. time for the link and the -> and target
printed.

• Devices (see ls /dev) should be handled correctly
• UID and GID values that cannot be resolved should be printed numerically

4 of 9
October 2008 UFEEHJ-30-2

• Any combination of files, directories and flags should be accepted.
• The output should be sorted

(35 marks)

d. ps
Default behaviour is to list all processes owned by the user. It should accept the
flag -A as an argument and list all current processes and their process Id's .

(17 marks)

e. kill
This command should respond as follows :

• kill pid send SIGTERM to process pid

• kill –l list the signals sent by this command. Your version of kill

 should recognise SIGTERM, SIGKILL and SIGHUP. It
 should provide a list of both the names of the signals and
 their numbers. RTFM section 7 signal.

• kill signal pid send the specified signal to pid. It should recognise both

 the numeric value and the name of the signals.
(8 marks)

f. A basic shell
http://www.cs.ucsd.edu/classes/wi97/cse80/dumbshell.html provides a very
simple shell. You may use this (The code is also attached). Your shell should at a
minimum provide the capability to support executing commands. You may
obviously develop your own shell, for which substantial credit under extras (h) will
be given.

g. Integration of [a-e] within f
Your shell (or the dumbshell) should have the commands you have implemented
as built-ins.

(10 marks)

h. Extras!
A further 20% is available, at the discretion of the markers, for outstanding work.
These marks will be awarded for high quality original code, robust code and
extensions to your shell.

Specifically, the implementation of piping & redirection will gain
significant credit under this heading.

 Version control will also gain credit under this heading.

Examples of work which could be worth extra credit would be adding functionality
such as simple control structures (if, while, for), filename completion or history to
your shell, or providing support for additional flags in ls. If you wish to extend
your work consult your lab tutor.

5 of 9
October 2008 UFEEHJ-30-2

(up to 20 marks)

Constraints

1. All code MUST be demonstrated and explained to your lab tutor before it will be
signed off.

Remember, this is an individual assignment and that assessment offences are
taken seriously. This does not prevent you from discussing problems and ideas
with your peers and you are encouraged to do so as long as the final result is your
own work. If you use sections of code from other sources then they must be clearly
identified and you will be expected to demonstrate your understanding of the code
to your lab tutor.

All work MUST be demonstrated before the hand-in date, in lab session time. Do
not expect to turn up at the last lab and demonstrate everything.

2. Undemonstrated code will forfeit all marks for that component.

3. Support for system calls

Possibly the best advice is Read The Friendly Manual ☺ All system calls are
documented in section 2 of the manual. All C library functions are documented in
section 3. man 2 syscalls will give you a list of system calls.

System calls will be covered in Nigel Guntons lectures. There is also a very good
web-site that covers much of the assignment material. (see the link from Nigel’s
home page).

6 of 9
October 2008 UFEEHJ-30-2

Other Resources

WWW

Nigel Gunton’s homepage (http://www.cems.uwe.ac.uk/~ngunton) has unix/linux
system programming related links.

The linux documentation project, has too many resources to list!

Dead Trees

Stevens, Richard W; “Advanced Programming in the Unix® Environment”,
 Addison-Wesley, 1993.

Rochkind, Marc J; “Advanced Unix Programming”,
 Prentice Hall, 1985.

These are both excellent system level programming reference guides. Both of these
books are not cheap, but provide a professional level reference that will last you through
many years of your career.

Alternatively, the library is an excellent place to discover books!

Your lab tutor

These are often worth talking to ☺ and can provide support for C syntax etc.

Deliverables

Your sign-off sheet, signed and dated for all completed work.
Signed off code DOES NOT INDICATE THAT MAXIMUM MARKS HAVE BEEN
ACHIEVED

A signed off copy of your description of the issues in handling the test directory for ls.

Copies of all code that has been demonstrated/explained to your tutor.

7 of 9
October 2008 UFEEHJ-30-2

Student Number:

UFEEHJ-30-2 Assignment 1 Checklist
 Comments Signed Date
pwd

cd

ls

ps

kill

shell

integration

piping &
redirection

Extras!

Other comments:

8 of 9
October 2008 UFEEHJ-30-2

dumbshell.c

#include < stdio.h >
#include < stdlib.h >
#include < unistd.h >
#define DEBUG 1
#define MAXLINELEN 4096
#define MAXARGS 128
#define END_OF_LINE 0
#define SEQ_OP ';'
#define SEQUENCE 1

struct cmd {
 struct cmd *next;
 int terminator;
 char *exe_path;
 int nargs;
 char *arg[MAXARGS];
};

void *ck_malloc(size_t size)
{
 void *ret = malloc(size);
 if (!ret) {
 perror("dumbshell:ck_malloc");
 exit(1);
 }
 return ret;
}

char *skip_to_non_ws(char *p)
{
 int ch;
 while (ch = *p) {
 if (ch != ' ' && ch != '\t' && ch != '\n') return p;
 ++p;
 }
 return 0;
}

char *skip_to_ws_or_sep(char *p)
{
 int ch;
 while (ch = *p) {
 if (ch == ' ' || ch == '\t' || ch == '\n') return p;
 if (ch == SEQ_OP) return p;
 ++p;
 }
 return 0;
}

struct cmd *parse_commands(char *line)
{
 char *ptr;
 int ix;
 struct cmd *cur;

 ptr = skip_to_non_ws(line);
 if (!ptr) return 0;
 cur = ck_malloc(sizeof *cur);
 cur->next = 0;
 cur->exe_path = ptr;
 cur->arg[0] = ptr;
 cur->terminator = END_OF_LINE;
 ix = 1;
 for (;;) {
 ptr = skip_to_ws_or_sep(ptr);
 if (!ptr) {
 break;
 }
 if (*ptr == SEQ_OP) {
 *ptr = 0;
 cur->next = parse_commands(ptr+1);
 if (cur->next) {
 cur->terminator = SEQUENCE;
 }
 break;
 }
 *ptr = 0;
 ptr = skip_to_non_ws(ptr+1);

9 of 9
October 2008 UFEEHJ-30-2

 if (!ptr) {
 break;
 }
 if (*ptr == SEQ_OP) {
 /* found a sequence operator */
 cur->next = parse_commands(ptr+1);
 if (cur->next) {
 cur->terminator = SEQUENCE;
 }
 break;
 }
 cur->arg[ix] = ptr;
 ++ix;
 }
 cur->arg[ix] = 0;
 cur->nargs = ix;
 return cur;
}

void execute(struct cmd *clist)
{
 int pid, npid, stat;

 pid = fork();
 if (pid == -1) {
 perror("dumbshell:fork");
 exit(1);
 }
 if (!pid) {
 /* child */
 execvp(clist->exe_path,clist->arg);
 fprintf(stderr,"No such command: %s\n",clist->exe _path);
 exit(1);
 }
 do {
 npid = wait(&stat);
 printf("Process %d exited with status %d\n",npid, stat);
 } while (npid != pid);
 switch (clist->terminator) {
 case SEQUENCE:
 execute(clist->next);
 }
}

void free_commands(struct cmd *clist)
{
 struct cmd *nxt;

 do {
 nxt = clist->next;
 free(clist);
 clist = nxt;
 } while (clist);
}

char *get_command(char *buf,
 int size,
 FILE *in)
{
 if (in == stdin) {
 fputs("@ ",stdout); /* prompt */
 }
 return fgets(buf,size,in);
}

void main(void)
{
 char linebuf[MAXLINELEN];
 struct cmd *commands;

 while (get_command(linebuf,MAXLINELEN,stdin) != NU LL) {
 commands = parse_commands(linebuf);
 if (commands) {
 execute(commands);
 free_commands(commands);
 }
 }
}

