
Faculty of Computing, Engineering and Mathematical Sciences

Inter nal Moderation of Coursework

General Instructions
The module leader should supply to the moderator a printed copy of the proposed assignment which should

include indications of due date, weighting, assessment criter ia and effor t required. The moderator should use this

form to comment on and progress the assignment, recording brief comments on the for m and more extensive

ones on the assignment specification. When the assignment has been agreed with the module leader, the

moderator should sign the for m and submit it along with the assignment to the CEMS Programmes Office.

Module Leader to complete this Section

module name CSA module number ufeEHF-30-1

assignment number 2 issue date 6/2/08

% weighting in module 35% estimated time to complete 18 hrs

module leader Rob Williams inter nal moderator Nigel Gunton

work set by Rob Williams

Moderation
The moderator should check the assignment is satisfactor y with respect to:

- rubr ic (including due date, weighting, and estimated effor t)

- the task specification

- mar k allocation and assessment criter ia

- lev el of wor k

- effor t needed

moderator’s comments setter’s response

Internal moderation completed
date signed

(inter nal moderator)

0

BRISTOL

U
W

E MODULAR PROGAMME
ASSESSED COURSEWORK SPECIFICATION

Module Details:

Module Module
Code: Title:

ufeEHF-30-1 Computer Systems Architecture

Module Leader:
Rob Williams

Module Tutors:
Ian Anderson

John Counsell

Laurence O’Brien

Assignment Element Number : Weighting Total Assignment Time:

CW2 35% 12 hrs

Dates:

Date assignment issued to students: Date for return of mar ked wor k:

Feb 4th May 8th

Submission Place: Date of Submission:

postbox in N foyer, Thurs 10th April

below the North stairs

Time of Submission:

10.00am

Deliverables:

As listed on the Assignment spec sheet

Work in pairs, submitting a single report

1

BSc CSI/CRTS/CSE, ufeEHF-30-1, CSA Assignment 2 (Feb 08)

Hand-in date: Thurs 10th April

This wor k is an extension of the first assignment and the recent wor ksheet on RS232 Serial Communications. It

ser ves as an introduction to networ king.

You are required to wor k in pairs (two people), only a single piece of wor k is to be submitted for assessment and

each contributor will receive the same mark. Wor king in threes or more is not permitted unless agreed by the

module leader (Rob Williams).

The aim is to produce a semi-robust text messaging system to pass packets of data between small clusters of

PCs. The PCs will be connected by a special looped cable through one of their COM ports. The packets must

confor m to the following construction:

Packet Structure

| | | | | 10 Byte | | |

| { | D | S | T | <----- Payload ------> | CS | } |

|___|___|___|___|________________________________|____|___|

16 bytes

Packet head comes

comes first last

{ - star t mar ker

D - user ID at destination station. A-Z

S - user ID at source station. A-Z

T - packet type:

L - login by new user

X - logout by user

R - response to login packet

D - data payload

Y - acknowledge, ACK, good packet received

N - nonacknowledge, NAK, damaged packet received

Payload - The 10 character messages originate from the keyboard. Local messages are displayed on the

screen and acknowledged to the source. Nonlocal messages are simply passed onward without display.

CS - the single byte checksum should be the inverted modulo-128 sum of all the other bytes in the packet. This

is a 7 bit number but to avoid confusion with other ASCII chars, set the ms bit during transmission. If a packet

is received with a good checksum, an ACK packet is retur ned, otherwise a NAK packet. ACK & NAK packets

themselves are never acknowledged. The implementation of this facility may be left until the end.

} - end marker

2

Functionality
Data is transmitted at 9600 bps, 8 bits, no par ity, 1 stop bit. Hardware flow control (CTS/RTS) must be enabled.

This can be done using Hyperter minal/minicom dur ing the hardware checking procedure, but should be repeated

by initialization code within your own program.

Users are to be uniquely identified by a SINGLE letter (A-Z) which must be entered at LOGIN by the current user.

When a user logs out the local ID is set to zero.

Stations with no user logged in must still pass packets and not interrupt the loop.

On boot-up and before user log in, the station will have its user ID set to zero. When a new user logs in, an L

packet is transmitted with the source and destination fields set to the new ID. No ACK packets should be received

from this and the L packet should return home for destruction. Any inter mediate stations with a logged in user,

should send an R packet to the new user, infor ming of their presence. This is to ensure that the chosen ID is

unique for the ring. If an ID duplication has occurred, the other station will see its own ID, remove the packet and

transmit an ACK packet back. Should this happen, an error message should be displayed to the new user, and an

alter native ID be requested.

The station should be waiting for incoming packets and at the same time watching the keyboard for input.

A Send Message keyboard sequence starts with a ’D’ (destination). A valid ID letter is then requested after which

the next character string, upto 10 characters, or a RET, is the message. The new message is displayed and then

sent if an ’S’ is entered.

Packets to unknown users should be refused before transmission, either using a probe transmission or, better, by

implementing a local Active User List.

L packets can help support local User Lists of active users. When a station passes an L packet through, it will also

respond with an ’R’ packet to allow the new user to find out who else is logged in. The array. This directory can

then be maintained by spying on passing traffic, and acting on LOGOUT ’X’ packets.

To logout from the system, the letter ’L’ should be used. This is not a system closedown, packets should continue

passing through the station.

Packets with the local user ID as source should be deleted. Packets with the local user ID as destination are

displayed, ACKed and deleted. All incoming damaged packets must be deleted and not retransmitted.

When a packet is transitted it should be stored (pended) in case it needs to be retransmitted in the event of a NAK

or more commonly a time-out error (failure to receive an ACK within 5 secs). After 4 retransmission attempts, an

error message should be displayed and the destination ID deleted from the local directory. A proxy LOGOUT

packet might then be transmitted to tell the other stations of the nonexistence of that ID.

Advice & Hints
1. Read this spec, read it again. And again.

2. Attend briefing lectures, and read the spec. Again.

3. Your software should be structured as three tasks or threads based on the FSD examples provided.

These will handle: Packet Reception, Packet Transmission, Keyboard & Screen.

4. Understand the desired functionality. Then sketch a s/w design. Then start coding incrementally

so as to be able to test each part.

5. A helpful Debug mode should be provided (ˆD toggle on/off) to display the full incoming packet str ucture.

Nor mally only the payload message and source ID should be displayed.

6. To avoid the situation of two users simultaneously logging-in with the same ID, the L packet payload

should contain a unique key, such as local time (GetTickCount() on Windows or times() on Linux).

Getting started
Star t with only two PCs interconnected and check an end-to-end serial link with Hyperter minal. Kill one

Hyper terminal, and implement the given kbd starter code. Login and watch Hyperter minal at the receiver end.

You may respond by hand typing a reply packet from Hyperter minal. If all seems to be wor king OK, kill off

Hyper terminal and run up mirror.exe in its place. This displays received packets and reflects them back, too.

Now wor k on developing your Tx & Rx tasks, using mirror.exe as a debugging aid. Use the VisualStudio

debugger to single step through packet transmit and receive sequences. This takes time but builds your

confidence in the code. For home development, you can use a single PC if it has two COM ports. Good luck!

3

Deliverables

Source Code in C 40%
a) Comments focused on the problem not the instructions

Comments not over long, so unmaintainable

Program banner : author name & date, revision date, functional description, user advice

Function banner comments, functional description, parameter list, war nings

Clear code structure expressing three tasks with operational sequences

(possibly using finite state implementation through SWITCH/CASE or table)

Device opens are error checked

Functions use parameters effectively

Debug mode to optionally display all packets

Non-blocking code structure

Computes packet 7 bit checksum for tx, and validates checksum on rx

Requests retransmission using a NAK if checksum error detected

b) Ability to check that new login ids are currently unique

Builds online user list

Maintains current user list

Refuses messages to invalid user ids but can send test message to self

c) Pends outgoing packets for re-tx, clears pending packets on ACK, or after 5 attempts

Demonstration 1 station with the mirror.exe test code. (5% max)
OR

Demonstration with only 2 stations. (15% max)
OR

Demonstration with more than 2 stations. 30%
boots up from a desktop icon and starts running

accepts user login ID letter from keyboard

accepts keyboard message (<=10 char or CR) and destination ID

transmits message packet to mirror.exe

displays debug message indicating incoming packet and full contents

displays message payload when correct destination (self-addressed)

removes packet (because of source ID)

allows user to logout without rebooting system

passes packets onward before user logs in

Checks new ID is unique on the LAN

Refuses poorly addressed packet with error message

Does not block dur ing keyboard message input

Basic messaging functionality available

Basic messaging functionality available

Stores outward packet until acknowledge received and retransmits a limited number of times.

Will not send a packet to an unresponsive station.

Recovers from a pathological test sequence

Full finite state diagrams for each par t of your system 15%
Accurately describes the functionality for transmission, reception, keyboard entry

and packet handling. The FSDs must be easily related to the code (or table).

The URL for a small website (2 pages) 15%
This adver tises your product, describing its functionality to potential users.

Provide your executable code as a zip file for downloading and installation

There should be installation instructions and user guidance

BONUS marks:
For interwor king reliably with someone else’s program. 5%
For interwor king reliably with foreign language code. 5%
For interwor king reliably with foreign operating system. 5%

4

LOGIN
0

ADDR
PENDING

1

MENU
2

ACCEPTING
MESSAGE

4

GETADDR
3

get local ID

time out
invalid ID

L packet retur ns
valid ID

´D´

´ˆD´
Toggle
debug
mode

´C´

´S´

´X´

valid
dest ID

invalid
dest ID

text i/p
complete

<11
chars

tout++
Send L packet

tout=0

logout
myaddr=0

form chsum
rqsend

set dest ID

display menu

display menu

FSD for Keyboard handler Task

5

/* Rob Williams Feb 5th 2008

Starter code for RingLAN keyboard task to run on Windows. Contains some KBD & TX

but no Rx code. Also the tx packet pending facility is not yet fully implemented here.

*/

#include <stdio.h>

#include <conio.h>

#include <ctype.h>

#include <windows.h>

#include <winbase.h>

#define LOGIN 0 // states for KBD FSM

#define ADDRPENDING 1

#define MENU 2

#define GETADDR 3

#define INPUTMESS 4

#define WAITING 0 // states for RX FSM

#define RECEIVING 1

#define ARRIVED 2

#define DECODING 3

char myaddr = 0;

int rqsend;

int rxflag;

int kindex, rxindex, txindex;

DWORD dwError;

char rxpacket[16];

char txpacket[16];

char kbdpacket[16];

// { dest src type <------data---------> cs }

// 0 1 2 3 4 13 14 15

struct z {

int loggedin; //0: not logged in, 1: logged in, -1: home

int pending; //packet pending?

char packet[16]; //last packet txed

} pendtable[26];

int pendindex = 0;

HANDLE hCom;

BOOL fSuccess;

/* Initializes serial port

* entry parameter: pointer to device name string

* exit: sets up rx/tx parameters, no blocking

* sets global hCom

*/

void initcomm(char* device) { //--------------------------------------

COMMTIMEOUTS noblock;

DCB dcb;

hCom=CreateFile(device,

GENERIC_READ | GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

0,

NULL

6

);

if (hCom == INVALID_HANDLE_VALUE) {

dwError = GetLastError();

printf("INVALID_HANDLE_VALUE()");

}

fSuccess = GetCommTimeouts(hCom, &noblock);

noblock.ReadTotalTimeoutConstant = 1;

noblock.ReadTotalTimeoutMultiplier = MAXDWORD;

noblock.ReadIntervalTimeout = MAXDWORD;

fSuccess = SetCommTimeouts(hCom, &noblock);

fSuccess = GetCommState(hCom, &dcb);

if(!fSuccess){

printf("GetCommState Error!");

}

dcb.BaudRate = 9600;

dcb.ByteSize = 8;

dcb.fParity = FALSE;

dcb.Parity = NOPARITY;

dcb.StopBits = TWOSTOPBITS;

dcb.fRtsControl = RTS_CONTROL_HANDSHAKE;

dcb.fOutxCtsFlow = TRUE;

fSuccess = SetCommState(hCom, &dcb);

if(!fSuccess){

printf("SetCommState Error!");

}

printf("Comm port set\n");

}

/* Nonblocking read from serial port identified by global hCom

* returns: char or 0

*/

char readcomm() //--------------------------------------

{

char item;

int ni;

fSuccess = ReadFile(hCom,

&item,

1,

&ni,

NULL

);

if (ni >0) return item;

else return 0;

}

/* Nonblocking read from keyboard

* returns: char or 0

*/

char readkbd() //--------------------------------------

{

if (kbhit()) return getch();

else return 0;

}

/* Sets up a fresh packet ready for use

* entry: pointer to 16 byte area for packet

*/

void clearpacket(char* ppacket) {//--------------------------------------

int i=0;

ppacket[i++] = ’{’;

7

ppacket[i++] = 0;

ppacket[i++] = myaddr;

ppacket[i++] = 0;

while (i < 15) ppacket[i++] = ’ ’;

ppacket[i] = ’}’;

}

/* Calculates and sets a checksum

* entry: pointer to a packet

*/

void setchsum(char * ppacket) { //--------------------------------------

int chsum = 0, i;

ppacket[14] = 0;

for (i=0; i<16; i++) chsum += ppacket[i];

ppacket[14] = ˜ (chsum%128);

ppacket[14] |= 0x80;

}

/* dispatches packet to port for transmission

* entry pointer to 16 byte packet

*

*/

int sendpacket(char* ppacket) { //--------------------------------------

int ni;

fSuccess = WriteFile(hCom,

ppacket,

16,

&ni,

NULL

);

if (ni == 16) return 0;

else return 1;

}

/* A starter program using 3 sequential, non-blocking, cooperative tasks

* this is only one solution, there are many others, such as pthreads.

*/

void main() { //--------------------------------------

int confirm = 0;

int key, i, keycnt=0;

kindex = LOGIN;

myaddr = 0;

initcomm("COM1");

puts("Welcome to the text ring, plz enter your id\n");

while (1)

{

/********************************* KbdTask ***/

switch (kindex) {

case LOGIN:

if (kbhit()) {

key = toupper(getch());

if (key >= ’A’ && key <= ’Z’) {

myaddr = key;

clearpacket(kbdpacket);

kbdpacket[1] = myaddr;

kbdpacket[2] = myaddr;

kbdpacket[3] = ’L’;

setchsum(kbdpacket);

for(i=0; i<26; i++) { // clear pending table

8

pendtable[i].loggedin = 0;

pendtable[i].pending = 0;

}

strncpy(pendtable[myaddr-’A’].packet, kbdpacket, 16);

pendtable[myaddr-’A’].pending = 5; // 5 attempts to login!

kindex = ADDRPENDING;

}

}

break;

case ADDRPENDING:

if (pendtable[myaddr-’A’].loggedin == -1) { //id OK for me, temp test code, RX will do this

printf("Your home id is now set to: %c\n", myaddr);

kindex = MENU;

} else {

if (pendtable[myaddr-’A’].pending < 1) {

puts("Either cable break or duplicate login id, try again\n");

kindex = LOGIN;

pendtable[myaddr-’A’].pending = 0;

myaddr = 0;

}

}

break;

case MENU:

puts("Options: Destination, Send, Cancel, Logout\n");

if (kbhit()) {

key = toupper(getch());

switch (key) {

case ’D’:

puts("The destination address is: ");

kindex = GETADDR;

break;

case ’S’:

if (kbdpacket[1]) {

pendtable[kbdpacket[1]-’A’].pending = 5;

clearpacket(kbdpacket);

}

break;

case ’C’:

clearpacket(txpacket);

break;

case ’L’:

case ’Y’:

if (!confirm) {

puts("\nAre you sure you mean to logout? Y/N\n");

confirm++;

} else {

puts("\nLogging you out now\n");

confirm = 0;

clearpacket(kbdpacket);

kbdpacket[1] = myaddr;

kbdpacket[2] = myaddr;

kbdpacket[3] = ’X’;

setchsum(kbdpacket);

if(pendtable[myaddr-’A’].pending == 0) {

strncpy(pendtable[myaddr-’A’].packet, kbdpacket, 16);

pendtable[myaddr-’A’].pending = 1;

}

for(i=0; i<26; i++)

pendtable[i].loggedin = 0;

myaddr = 0;

kindex = LOGIN;

}

break;

9

default:break;

}

}

break;

case GETADDR:

if(kbhit()) {

key = toupper(getch());

if(pendtable[key-’A’].loggedin==0) {

puts("Destination not logged in at present\n");

kindex = MENU;

}else {

clearpacket(kbdpacket); //set up packet

kbdpacket[1] = key; //dest addr set

keycnt=4;

kindex = INPUTMESS;

}

}

break;

case INPUTMESS:

if(kbhit()) key = getch();

if(keycnt<14 && key != ’\n’)

kbdpacket[keycnt++] = key;

else {

setchsum(kbdpacket);

if(pendtable[kbdpacket[1]-’A’].pending == 0) {

strncpy(pendtable[kbdpacket[1]-’A’].packet, kbdpacket,16);

kindex = MENU;

} else {

}

}

break;

}

/********************************* TxTask ***/

/* Scans down through the pending table looking for packets to transmit */

{

if (++pendindex > (’Z’-’A’)) pendindex = 0;

if (pendtable[pendindex].pending > 0) {

sendpacket(pendtable[pendindex].packet); // transmit next available packet

pendtable[pendindex].pending--;

}

}

/********************************* RxTask ***/

switch (rxindex) {

case WAITING:

break;

case RECEIVING:

break;

case ARRIVED:

break;

case DECODING:

break;

default:

break;

}

}//forever, 3 task loop

} //main

10

A 0/1 0-5 packet pending Tx

B

Y

Z

The pendtable is a significant data structure at the centre of the operation. It is structured to record details of who is

logged into the RingLAN, and also to hold copies of packets due for transmission (first or subsequent times). So it acts

as a directory and a transmission queue. The first field is initialized to 0, and set to 1 when that letter/id is used following

a login. It also helps to use -1 to mark the home station id. The second field is used to indicate that a packet is waiting

for transmission to that station. As 5 retries are required before giving up, the field can be set to 5 and decremented on

each transmission attempt. With this setup, multiple simultaneous retries can be handled, but with only one packet for

each station.

WAITING
0

RxING
PA CKET

1

ARRIVED
2

DECODING
3

Rxed {

Rxed packet

Rx char

Bad Packet

Good Packet

Check packet

Decode packet

FSD for Rx Packet Task

11

Using a decision table when considering all the flavours of incoming packets which have to be catered for is

possibly better than resorting immediately to a FSD. Consider the following table which describes all the

combinations of the different field values in a packet..

Pkt

Src Des Type Action

L my login id is OK, del packet

R illegal

me D test mesg, del packet, return ACK

A cancel pending entry, del packet

N retransmit pending table entry

X logout now, del myaddr & pending table

me L illegal

R error, where has he gone now?

you D rx failed, del packet, re-tx from pending table

A rx failed, del packet,

N rx failed, del packet,

X illegal

L illegal

R response to my login, del packet, update pending tbl

me D real mesg!, return ACK, del packet

A del packet, cancel pending entry

N del packet, re-tx from pending table

X illegal

you L re-tx packet, update pending, return R

R illegal

you D re-tx packet

A re-tx packet

N re-tx packet

X logout info, re-tx packet, ammend pending table

12

The decision table then needs to used when coding the rx packet handler task.

if (rxpacket[1]==myaddr) {

if (rxpacket[2]==myaddr) {

switch (rxpacket[3]) { // to me from me

case ’L’:

............; // my login id is OK, del packet

break;

case ’R’:

............; // illegal

break;

case ’D’:

............; // test mesg, del packet, return ACK

break;

case ’A’:

............; // cancel pending entry, delete packet

break;

case ’N’:

............; // retransmit pending table entry

break;

case ’X’:

............; // logout now, del myaddr & pending table

break;

default:

break;

}

} else {

//to me from you

.....repeat SWITCH/CASE............

}

} else {

if (rxpacket[2]==myaddr) {

//to you from me

.....repeat SWITCH/CASE............

} else {

// to you from you

.....repeat SWITCH/CASE............

}

}

This code gets a bit repetitive, but is is easy to understand, with the aid of coloured pens to highlight the blocks of

code! A better scheme might use a jump table to select the appropriate code paragraphs.

13

