
Faculty of Computing, Engineering and Mathematical Sciences

Inter nal Moderation of Coursework

General Instructions
The module leader should supply to the moderator a printed copy of the proposed assignment which should include
indications of due date, weighting, assessment criter ia and effor t required. The moderator should use this for m to
comment on and progress the assignment, recording brief comments on the for m and more extensive ones on the
assignment specification. When the assignment has been agreed with the module leader, the moderator should
sign the for m and submit it along with the assignment to the CEMS Programmes Office.

Module Leader to complete this Section

module name CSA module number ufeEHF-30-1

assignment number 1 issue date 25/10/07

% weighting in module 15% estimated time to complete 12 hrs

module leader Rob Williams inter nal moderator Nigel Gunton

work set by Rob Williams

Moderation

The moderator should check the assignment is satisfactor y with respect to:

- rubr ic (including due date, weighting, and estimated effor t)
- the task specification
- mar k allocation and assessment criter ia
- lev el of wor k
- effor t needed

moderator’s comments setter’s response

Internal moderation completed
date signed

(inter nal moderator)

0

BRISTOL

U
W

E MODULAR PROGAMME
ASSESSED COURSEWORK SPECIFICATION

Module Details:

Module Module
Code: Title:

ufeEHF-30-1 Computer Systems

Module Leader:
Rob Williams

Module Tutors:
John Counsell

Laurence O’Brien

Assignment Element Number : Weighting Total Assignment Time:

CW1 15% 12 hrs

Dates:

Date assignment issued to students: Date for return of mar ked wor k:

Nov 13th Feb 2nd 2005

Submission Place: Date of Submission:

postbox in N foyer, Thurs 20th Dec

below the North stairs

Time of Submission:

10.00am

Deliverables:

As listed on the Assignment spec sheet

1

ufeEHF-30-1 CSA, First Coursework Assignment, Nov 2007

The assignment must be delivered, with a completed Official Cover Sheet before the designated hand in date, week
beginning 17th December. You are strongly advised NOT to hand in on the final day, but plan your submission for
the previous Friday. Demonstrations for your tutor should be arranged before that date.

This assignment is a practical introduction to serial communications using the COM1 serial port on the PC. All
code, as far as practicable, should be in asm86. C should only be used to start up the __asm directive in the
VC++ Developer Studio. Calls to intrinsic C functions and Win32 are permissible for i/o operations.

It is better to wor k in pairs for this assignment, handing in a single, joint document. Both partners will gain the
same mark.

Develop a secure point-to-point text transfer system. It should be able to take a large text file from disk, "encrypt" it
and transfer it safely to the destination computer where it will be received, decrypted and stored on disk as a plain
text file.

The encryption technique should use a secret binary "key" which has to be known to both source and destination.
This key can be of any length. The key must be read from a USB stick or floppy disk, where it may be encr ypted,
too.

Deliverables:

1. After you have read this spec, but before you fully start with design and coding, email rob.williams@uwe.ac.uk,
with SUBJECT field set to "ESTIMATE", an estimate of how long the program will take you to design and code. If
you do not do this you will forfeit the mark for Section 5.

2. Supply a fully commented source listing of your programs. (35 marks)

Provision of header comments
Correct use of __asm
Definition of data in C section
Access to Win32/libc calls - parameter handling
Use of user defined subroutines - CALL/RET
Register parameters
Stack parameters
Local var iable stack frames using ENTER/LEAVE
Clear code structure
en/decr yption code structure
Error handling

3. Demonstrate to your lab tutor a functioning system. You must supply a printed source listing for discussion which
will then be dated and signed by the tutor This should then be handed in with the other documents.

It starts to run from the debugger (25 mar ks)
It starts from a desktop icon
It continues without crashing
It achieves the basic functionality
It is fully understood by authors

4. Build a small web site, minimum 2 pages, including some diagrams and links to other useful sites. This should be
in two par ts:

4.1 An explanation of the var ious methods of parameter passing used by HLL compilers.

What is a parameter, where would it be used? (25 marks)
What is the advantage over alter native methods?
What is a Stack Frame?
How is the Base Frame Pointer used?
Is there any similar ity between Local Var iables and function Parameters?

2

4.2 An Outline description of the operation of your encryption scheme. (10 marks)

5. Provide a retrospective total of the time you have spent on designing and coding
the programs. Provide a reference list, including useful URLs (5 marks)

NB. Set up the serial link (COM1) using Hyperter minal for HARDWARE FLOWCONTROL.
Check the operation between the 2 PCs before starting.

Rob Williams, 22/10/07

3

Encr yption, A Brief Introduction by Julian Walters

Encr yption is the process of transfor ming data so that, while sender and receiver can still determine its meaning,
anyone else will find it incomprehensible. As with most things in life, encr yption techniques range from the simple to
the intensely complex, with every shade in between. The history of encr yption, and the parallel activity of
clandestine decryption or code breaking, provides an exciting view of some of the wor ld’s most significant events.
Without coders and decoders the wor ld would be ver y different today. Have a look in Simon Singh’s excellent text
"The Code Book" for an exciting, readable perspective.

Simple Encryption

The simplest and earliest for m of encryption is a process termed Substitution Encryption. In this, each character
is swapped with a different one, consistently throughout the original text. This can be done by applying and
algor ithm to the numer ic representation (ASCII) of the letters, or by using a look-up table. Consider the simple case
where we add 1 to the value of the character (except for "Z", which becomes "A"). Examine the table below which
illustrates this transfor mation:

Or iginal letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher letter codes BCDEFGHIJKLMNOPQRSTUVWXYZA

Examining the above table, the message "It is most dire send more money" becomes "ju jt nptu ejsf tfoe npsf
npofz". This is not too shabby at first sight, but the lack of encr yption of the space character means that the first two
words must belong to the ver y limited subset of words in the English language that have only two characters.
Worse, they both start with the same letter. This in itself is enough for someone else to break the cipher without
much effor t. While we could add the space character to the encryption set, this does not really strengthen the code
against attack.

Changing the transfor mation from an ADD to a logical XOR (conditional bit inversion), or byte ROTATE, would seem
to be better, but does not really stop the exper ienced code breaker, and also requires the use of non-printable
ASCII control codes.

The serious problem is that a numer ical analysis of English writing reveals the average frequency of use of each
letter each word, and even each common phrase. Such infor mation helps decoders to quickly crack substitution
codes, as long as they capture messages of sufficient length. All languages have a character which occurs most
commonly, second most commonly, and so on. Remember, the code breaker, trying to break the cipher needs, only
a few letters before he can start guessing at the rest. I cannot improve on the description of this process given in
the Sherlock Holmes story "The Dancing Men" by Arthur Conan Doyle, - read it, it’s a good yar n. Encr yption of this
type, where one cipher character always represents another plain text character, is ter med Substitution Encryption.

Before we leave this section it is of interest to note that during the fall of France in 1940, an isolated British unit
became aware that the Germans were reading and decrypting their transmissions. As luck should have it, both the
isolated unit and Group HQ contained a Welshman in their ranks. Morse communication in Welsh was soon
established, and most of the isolated unit escaped. The Germans were alarmed at what seemed an unbreakable
code until someone with the relevant linguistic education saw the transcr iptions, and revealed the nature of the
"code". The Americans used the same technique in their war with the Japanese by exploiting the weird north
amer ican Navajo language for battlefield communications. Frequency analysis code breaking techniques do not
work if you are unable to reliably identify the language components!

More Complex codes

It is obvious from the above account that straightforward substitution codes are no longer acceptable due to the
effectiveness of code breaking techniques. There are, how ever, some extra methods which can be used to render
character frequency analysis less easy. One more secure method of encryption involves having a single password
known only to the sender and intended receiver. The encryption method wor ks by combining the ASCII value of
each plain text letter with that of a password letter. So, successive password letters are applied to successive text
characters of the string to be encrypted, recycling the password over and over again. Let’s use the previous
example, with the password "seven", but instead of adding the two letter codes together we will use the logical XOR
operation. This inverts bits where they have the same value.

Plain text message It is most dire send more money

Password key sevensevensevensevensevensevens

XOR cypher text Z1v,=s(96:s!?7+s63+*s(97+s(9++*

4

(because many of the codes resulting from XORing two letters together are
unpr intable a 32 offset has been added to them all, just to allow you to read
something on the page!)

Simply adding two 7 bit ASCII characters will result in overflow into the 8th bit, which may not matter if the full byte
is transmitted, however if you want only to send 7 bits there is a problem! Substituting an XOR operation for the
addition avoids this problem. In the above example, the first character in the encrypted string "Z" would come from
XORing the ASCII values of "I" (0100_1001) and "s" (0111_0011), resulting in 0011_1010, ":", but to make all of the
encr ypted codes printable a further 32 has been added to make: 0101_1010, "Z".

The code breaker now has to first guess the cipher key. If you look at the cipher text, notice that "s(9", occurs 3
times at positions 5, 20 and 25. In each case they suggest the same three letter sequence has occurred, but more
impor tantly, the cipher key is likely to be 5 characters long! In fact, we know that the text trigram " mo" aligned up
with the password letters "sev". But although the code breaker will not yet know this, he can deduce that the
password is 5 characters long. Allowing the encrypted text to be divided into subgroups of 5 characters. At this
point all the cipher text caracters are placed into five alphabet groups, group 1 = characters 0, 5, 10,...; group 2 = 1,
6, 11,...; group 3 = 2, 7, 12,... etc. Letter frequency analysis can now be applied to the contents of each group as
was descr ibed in the substitution cipher example above . Because the contents of each group have been encrypted
with the same character they will present, as a group, a simple substitution encryption, although each group will
represent a separate case. Only a few letters are required for the code-breaker to start to fill in blanks. If the code-
breaker has enough of the encrypted text, he will soon find the password and crack the code.

The above scheme of encryption was for some considerable time held to be unbreakable. Char les Babbage took up
the task, challenging someone to provide a sample for him to break. To contemporar y obser vers he appeared to
fail. It was only many years latter that it was discovered that he had in fact succeeded in breaking the cipher, but
had been dissuaded from revealing this fact by official sources who used this for m of encryption for sensitive
communications. Whenever your own coder breakers are active, it is of the utmost prior ity to hide their successes
from the enemy!

Now we will look at an even stronger code: Multiple Alphabet
Substitution Encryption. This wor ks by using alternative lookup
alphabets rather than the single table explained in the previous
paragraph.

A single key or password is still employed but in a more subtle
manner. The extra complexity of this method comes from the use of
several substitution alphabets in place of one. The cipher key is
employed to select which of the alternative alphabets to use for each
of the plain text letters. The technique can be best understood by
consider ing the Vignenere square which holds all the cipher
alphabets:

Take a letter, say "t", from the plain text message and use the
matching letter, "c", from the key word to select a row. Thus the third
row down is the chosen cipher alphabet for use as a look-up table to
encode the letter "t". Pass along the top row until you reach "t" then
descend to the third row and pick out "v" as the coded letter. In this
way you cycle through the alternative cipher alphabets, confusing the
code crackers. In ter ms of code security, the longer the key word the
better.

Plain text: It is most dire send more money

Password key acidrainacidrainacidrainacidrai

abcdefghijklmnopqrstuvwxyz

bcdefghijklmnopqrstuvwxyza

cdefghijklmnopqrstuvwxyzab

defghijklmnopqrstuvwxyzabc

efghijklmnopqrstuvwxyzabcd

fghijklmnopqrstuvwxyzabcde

ghijklmnopqrstuvwxyzabcdef

hijklmnopqrstuvwxyzabcdefg

ijklmnopqrstuvwxyzabcdefgh

jklmnopqrstuvwxyzabcdefghi

klmnopqrstuvwxyzabcdefghij

lmnopqrstuvwxyzabcdefghijk

mnopqrstuvwxyzabcdefghijkl

nopqrstuvwxyzabcdefghijklm

opqrstuvwxyzabcdefghijklmn

pqrstuvwxyzabcdefghijklmno

qrstuvwxyzabcdefghijklmnop

rstuvwxyzabcdefghijklmnopq

stuvwxyzabcdefghijklmnopqr

tuvwxyzabcdefghijklmnopqrs

uvwxyzabcdefghijklmnopqrst

vwxyzabcdefghijklmnopqrstu

wxyzabcdefghijklmnopqrstuv

xyzabcdefghijklmnopqrstuvw

yzabcdefghijklmnopqrstuvwx

zabcdefghijklmnopqrstuvwxy

5

Obviously there are far more complex and difficult coding stratagems in existence, ones which cannot even now be
cracked in a reasonable time using the fastest computers available. An interesting development is the RSA Public
Key Encr yption scheme. This employs not a single key but pairs of Public and Private keys. The sender uses a
publically visible key to encr ypt messages, while the receiver needs the matched, private key to decr ypt the cipher
text. Once the system is set up by distr ibuting the private keys, data can be encoded and transmitted with some
confidence that no unauthorized decrypting and reading will take place. This brilliantly novel system relies on the
time it takes to find the factors for large (10129) numbers.

Plain text
file

Sender
encr ypt

Encr ypted message

Receiver
decr ypt

Public key Pr ivate key

Plain text
file

Generate
keys

1. To generate the Public/Pr ivate key pairs, you have to select two large prime numbers, which
we will call p and q. Ensure that p != q.

2. Compute n = p*q (187 = 17*11)

3. Select a small, odd integer e that is not a factor of (p-1)*(q-1), is > 1, and is < p*q. say 7.

Your Public Key for encryption is now (187, 7)

4. If the data to be sent is the ASCII letter ’A’, (data = 65)

5. The encrypted data is (data)e(mod p*q)

cr yptdata = (data**e)%(p*q);

Use bc, the command line calculator, or kcalc for the calculations: 142 = (65**7)%187(cryptdata = 142)

6. To decr ypt, select a number e, where 1 = d.e mod(p-1).(q-1)

7*e = 1 (mod 160)

Tr y out 7*1, 7*2, 7*3..... calculated to mod 160. When you get to 7*23 mod 160, the result will (at last) be 1.
(e = 23)

Your Private Key for decryption is now (187, 23)

6

7. Using whatever method you prefer, teeth, hammer, fire, make sure that p and q are
completely erased to prevent their reuse and hide e.

8. To recover the data from the encrypted code:

data = (cryptdata**d)%(p*q)

data = (142**23)%187
Unsur prisingly, this will generate numbers too big for kcalc so it has to be broken
down into factors:

data = (142**5)%187*(142**5)%187*(142**5)%187*(142**5)%187*(142**3)%187

data = (109*109)%187*(109*109)%187*131%187
= 65 original value of the data recovered!!

The secure remote login tool, ssh, offers an authentication method based on the twin key, RSA method. Each user
creates a public/pr ivate key pair for authentication purposes. The remote server knows the public key, and only the
user knows the private key for local use.

On Linux, the file $HOME/.ssh/authorized_keys holds all the public keys that are permitted for logging in using
ssh from a remote host. When the user logs using ssh, it tells sshd on the remote server which key pair it would
like to use for authentication. The server checks if this key is per mitted, and if so, sends back to the user (actually
the ssh program running on behalf of the user) a challenge, a random number, encr ypted by the user’s public key.
The challenge can only be decrypted using the proper private key. The user’s ssh client then decrypts the
challenge using the private key, proving that he/she knows the private key but without disclosing it to the server. In
this way neither password or key gets transmitted along the vulnerable channel.

To use ssh the user must generate the key pairs beforehand, and store them locally and on the remote server.
The RSA key pairs are synthesized using ssh-keygen. This stores the local private key in $HOME/.ssh/identity
and stores the companion public key in $HOME/.ssh/identity.pub in the user’s local home directory. The user
should then copy the identity.pub to $HOME/.ssh/authorized_keys on the remote machine. This requires a
conventional login to the remote server. The authorized_keys file corresponds to the conventional $HOME/.rhosts
file, with one key per line. After this, the user can log in without giving the password.

At the moment, even pow erful supercomputers find this a time consuming task.

Space and the author’s limited knowledge stops the explanation at this point.

If I were developing a simple code from scratch, I would consider the following alternatives:

1. use the single key transfor mation algor ithm with a cipher key of about eight characters length.

2. use the asm ROR instruction, with a var iable amount of rotation for each letter in sequence.

3. use a randomly generated look-up table

One nice trick to throw frequency analysis code breakers off the scent is to use bad spelling. Happy Coding!

Read These

The Code Book, Simon Singh, Four th Estate Books.

7

Full marking Schedule , tutors’ view

1. Develop a secure point-to-point text transfer system. It should be able to take a text file from disk, "encode" it
and transfer it safely to the destination computer where it will be received, decoded and stored on disk as a plain
text file.

A fully commented source listing of your program. (35 mar ks max)

Program banner with title, author name, date, running instructions 5 mar ks
Function banners 5 mar ks

Correct use of __asm directive 2 mar ks
Definition of data in C section 2 mar ks

fopen, fget, fput, fflush librar y CALLs
with stack parameters in correct order

stack scr ubbing using add esp,8 5 mar ks
EAX return value handling 5 mar ks
Error trapping and reporting 5 mar ks

Clear asm program str ucture 5 mar ks
minimum use of jmp, jz
canny use of CPU registers 5 mar ks
no unnecessary data var iables

Use of user defined subroutines in asm - CALL/RET 5 mar ks
Stack parameters
EAX return handling
Local var iable stack frames - ENTER/LEAVE 5 mar ks extra

Good en/decryption code 5 mar ks

Good appropriate comments: 5 mar ks
not line-by-line op code description
NO mention of CPU registers within a comment
explains WHY not how
descr ibes the algorithm not the code
groups several instr uctions together for a single comment

2. Demonstration and oral explanation of the functioning system. A full, printed source listing must be provided
which will be dated and signed by the lab tutor, then handed in with the other documents.

(25 marks max)
It runs once without crashing 5 mar ks
It achieves the basic functionality 10 marks
It is mostly understood by authors 5 mar ks
It is fully understood by authors 5 mar ks

3. A useful 2 page min. web site, including diagrams and reference links, concer ning the methods of parameter
passing used by HLL compilers.

diag of stack with frames, copied from a book 5 mar ks
diag of stack with frames, indicating understanding 10 marks

What is a parameter, where would it be used? (25 marks max)
data required by a function/subroutine to "localise" its activity 5 mar ks

What is the advantage over alter native methods? 10 mar ks
passing in a register limits the size/number of parameters, also non-reentrant
data block indicated by a pointer parameter,
global data not recommended because of its visibility.

What is a Stack Frame? 5 mar ks
data storage area allocated within the stack for every function/subroutine

8

Is there any similar ity between Local Var iables and function Parameters?
both held in stack frame, accessed through base frame pointer EBP

or by POPping into a register
"parameters are pre-initialized local var iables" 3 mar ks

Outline description of the operation of your encryption scheme. (10 marks max)

Reser ve 10 mar ks for the web site operation

6. References, including the useful URLs (5 marks max)

9

