
UFEEHE-30-1 C Programming Assignment2,

MODULAR PROGRAMME

ASSESSMENT SPECIFICATION

Module Details
Module Code
UFEEHE-30-1

Run
07SEP/1 AY

Module Title
Programming in C

Module Leader
Ian Johnson

Module Tutors
Ian Johnson, John Counsell

Component and Element Number
B2

Weighting: (% of the Module's assessment)
35%

Element Description
Practical Coursework 2

Total Assignment time
21 hours

Dates
Date Issued to Students
20/02/2008

Date to be Returned to Students
15th May 2008

Submission Date
17th April 2008

Submission Place
THE POST BOXES IN N BLOCK FOYERS
Boxes are open two weeks before submission date Submission Time

2.00 pm

Deliverables
As per attached specification

Module Leader Signature

Ian Johnson

http://fold.cems.uwe.ac.uk:8080/exist/servlet/db/fold1/prod/asstime.xql

UFEEHE-30-1 C Programming Assignment2,

Second Coursework - February 2008

Introduction

This term you will continue working in the “marco” laboratory. The overall objective for this
assignment is to create a control system for a tethered robot that implements a set of behaviours.
Whilst this may seem very challenging, in essence it is a continuation of the work you have already
done developing the duckshoot game. In that case, you were only required to read a single digital port
(the switches) and write to a single digital port (the LEDs). Here you have a much larger number of
devices to control.

Overall, a perfect completely functional system will gain you 70% without your report. It is not
expected that many people will achieve this! You will be working in pairs or individually for this
assignment.

This assignment is extremely similar to one that has been run successfully by E. Malliris for
engineering students both in the past and currently.

This is a large assignment, you will need to work throughout the term to achieve a good mark!

Marco Programming Assignment

Your assignment, due at 2pm on the day as specified on the cover, is to design and implement solutions
to the following tasks, as detailed in this document.

Deliverables:

1. A report, detailing your approach, containing your design, source code, testing etc. This
MUST be spiral bound, and MUST contain a section entitled “conclusions” or “review”
describing what you have learnt from the laboratory sessions this term.

2. A linux machine readable, capable of compilation copy of your work. This must be given
to your lab tutor at the time of the demonstration, and contain the actual code which will be
demonstrated. This should be on floppy disk or cd-rom. The source code will be tested for
similarity to the work of others by automated plagiarism detection software, and by submitting
this work you consent to this process.

3. A timesheet (see appendix a) MUST be included as an appendix to your report. Your lab
tutor should be asked to sign this off at every tutorial. A copy should be retained as
evidence of time management for the GDP

4. A plan (see appendix b) MUST be included. This should be signed off by your lab tutor
before you begin your work. . A copy should be retained as evidence of time
management for the GDP

5. A summary of no more than two sides of A4, including relevant URL’s or references of what
you have discovered from the world wide wide or other sources about subsumption
architectures, augmented finite state machines, and Rodney Brooks work. This MUST include
references. Note: biographical information is not required or relevant.

6. The presentation/viva. The laboratory sessions during the weeks beginning 21/04/08 and
28/04/08, will be given over to demonstrations of your work. You must supply your source
code on a floppy disk, from where it will be compiled and tested. Attendance at the
presentation is mandatory for all students. Your lab tutor will keep the disk. The source
code should be identical to that supplied in the report.

}30%

}70%

UFEEHE-30-1 C Programming Assignment2,

WARNING: The University has strict rules on pretending other peoples work is your own, or in
sharing work between groups. Having electronic copies of your source code to compare, makes
enforcing these rules much easier!

Hints and Notes

The biggest hint is use your PAL sessions!

In order to complete this assignment, you will need to build on your term 1 work. Digital input and
output is exactly the same, although you will have more inputs to consider.

Analogue I-O can be performed straightforwardly; lets look at input first:

ret=comedi_data_read(device,subdevice,channel,range,aref,&data);
if(ret<0)
{
comedi_perror(filename);
exit(0);

}

Device is returned by device open we met in term one.
Subdevice 0 offers 16 channels of input (subdevice 1 offers 2 channels of output)
Channels are numbered 0..n
Range can be 0 (0v-10v) or 1 (-10v to +10v)
Aref needs to AREF_GROUND
&data is the address of where you want the data to go.

After calling comedi_data_read a value between 0 and 4095 inclusive will be placed in data (question:
how many bits resolution is that?) or a negative value will be returned to show an error.

Output:

ret=comedi_data_write(device,subdevice,channel,range,aref,data);
if(ret<0)
{
comedi_perror(filename);
exit(0);

}

Note: The data this time is actual data NOT a pointer to it.

If you want to demonstrate your ability, feel free to use any of the better comedi functions. These are
all documented in the online documentation which is available on every machine in the marco lab.
What has been presented here is the most straightforward approach.

UFEEHE-30-1 C Programming Assignment2,

FF

Programming Tasks

1 Create a menu to enable selection of each of the tasks to be completed by MARCO. The tasks
required are shown as items 2 to 6.

2 Allow MARCO to be driven from a given start position using the analogue joystick and varying
control of the DC motors. In other words, if the joystick is pushed half forward, the motors should
drive forward at half speed. The operating mode for the analogue joystick is given below on the
left and the expected motor drive on the right. Control of MARCO by the joystick should
terminate automatically when MARCO detects the white line.

Joystick
position

left motor right motor

fwd full fwd full fwd

fwd right full fwd stop

right pivot full fwd full back

back right full back stop

back full back full back

back left stop full back

left pivot full back full fwd

fwd left stop full fwd

Your program should provide a smooth and proportional transition between these control
points.

3 Follow the white line using proportional control of the DC motors. When an obstruction is
detected by the bumpers MARCO should stop.

4 Move towards the brightest light source (could be more than one and may be moving) whilst
continuing to scan for light (scanning whilst moving). Your algorithm should cause MARCO to
move towards the light source quickly in response to large tracking errors and slowly when the
tracking error is small (a proportional response would be ideal). The function should terminate
when bumpers detect a collision. A record of the path taken towards the light should be recorded
and stored to disk as a data (ASCII) file.

5 Using the data file re-trace the path (recorded in 4) from the starting position to the point where it
stopped (approximately).

6 A Behaviour- Based AI Mobile Robotics Exercise. (See Appendix C)

Your robot should follow a white line, and if it loses the line perform a random search to attempt
to regain it. If this fails it should look for a bright light, and if one or more are found head towards
the brightest. If it encounters an obstacle, the robot should stop and return control to the operator
via the analogue joystick.

B

L R

UFEEHE-30-1 C Programming Assignment2,

Appendix A – Sample Timesheet

Date Start
Time

Finish
Time

Who Present Tasks done

UFEEHE-30-1 C Programming Assignment2,

Appendix B – An outline plan

You should plan your project and identify two milestones to assist you in achieving the required time-
scale. Part of this initial planning should be to divide the work required between the two members of
the group. This division of work should be detailed below. The milestones and division of work
should be presented to the Module Leader for signature before any coding or further planning is
started.

Milestones:
Description

(include number of tasks you can realistically accomplish before target date,
eg. milestone 1: menu, joystick control , follow light)

Target Date
(week beginning)

1 17.03.2003

2

Division of Work:

Student 1: Name: ______________________________________

Allocated Tasks (include here the tasks student 1 will try to accomplish)

Student 2: Name: ______________________________________

Allocated Tasks (include here the tasks student 2 will try to accomplish)

Lab tutor (acceptance of milestones and division of work):

Name :__________________________ Signature: ____________________________

UFEEHE-30-1 C Programming Assignment2,

Appendix C
A Behavior-Based AI Mobile Robotics Experiment

1. Background - The Demise of Classical AI for Mobile Robotics

The Behaviour Based Robotics “crusade” that swept through the Artificial Intelligence (AI) research
community in the late 1980s and early 1990s started a revolution that was just waiting to happen. By
the late 1980s, classical AI approaches had established a very successful reputation in certain important
niche application areas. However, in these times, an important focus on “situated” AI emerged, i.e.,
Artificially Intelligent creatures moving and interacting with their environment. It quickly became clear
that the usefulness of the Classical AI approaches in fast reactive, and other low-level, behaviour
commonly found in these robotics-dominated areas, was very limited. The classical approach to the
embedded tasks of goal achievement for a mobile robot in a sensor information-rich environment,
seemed to be computationally intractable. The classical, and ultimately unsuccessful, approach
involved three phases. Firstly, collect all available sensory information (the “sense” phase). Secondly,
process all this low-level data together (normally in very complex ways) to build an environmental
model that can be manipulated in meaningful ways (the “think” phase). Finally, drive the motor
interfaces appropriately (the “act” phase). This structure is illustrated in figure 1 below. The first and
second phases of this sequential procedure can be very computationally demanding, partly because the
robot’s controller is trying to manipulate all of the information centrally.

In addition to all of this, over the 1970s and into the 1980s, there was an increasing realisation that
AI had not really made the huge strides forward that had been predicted in the 1950s. Human conscious
logical reasoning had been the focus for AI research throughout the 1950s, 60s, 70s and 80s. This is
still a very important area for research. However, it is only in the areas of long, repetitive and detailed
mathematical processing, that computers have really made achievements beyond the capabilities of
human beings. In fact, in many respects (especially if one thinks widely across the range of successful
life on this planet in an evolutionary sense), conscious reasoning is really only the “icing on the cake”
of vertebrate (and invertebrate) animals. For example, the majority of the immense number of neurons
in the human-brain (1010 of them (or 10 billion!), are devoted to the unconscious processes of
sensorimotor co-ordination and movement. In other words, staying on our feet, moving and sensing in a
dynamic world, is really much harder than sitting and thinking!

Figure 1: The Classical AI method

Gather sensory data and
pre-process it (can be
VERY time-
consuming)

Make appropriate
actions in order to
achieve, or move
towards, some goal

Incorporate all new data
into a “world” model,
process this data to
form a plan

UFEEHE-30-1 C Programming Assignment2,

2. The Behaviour Based Approach

It is clear from modern studies of sub- and unconscious processing in the brain and spinal column, that
there are many processes going on simultaneously. A US resident Australian researcher, Rodney
Brooks, proposed the following simple, but highly successful, model for low-level sensorimotor
behaviour. His ideas came at a time when the aforementioned revolution in AI was gaining “steam”.
The idea was to split-up the information processing of an artificial creature, such as a mobile robot, into
small horizontal slices rather than vertically into the three phases described above. See figure 2 above
for an example, which might be suitable for use in a mobile robotics application.

In this model, each horizontal slice is a “behavioural module”. Each module uses only that sensory data
that is relevant to fulfilling its “competency”. The way each module processes the sensory data it
receives could be complex or very simple, but no matter how complex it is, it is likely to be much more
straightforward than the “process everything together” model of classical AI.

Periodically, a behavioural module that has control of the robot’s motors will relinquish that control.
This could happen because its sensory input is no longer relevant, e.g., a “white line following” module
no longer detects a white line.

Alternatively, this might happen because the sensory data means that another behavioural module
should take-over, e.g., an “obstacle avoidance” module suddenly needs to act so that an imminent
collision is avoided.

In most modern Behaviour Based Architectures an “Action Selection Mechanism”, or ASM, mediates
between the behavioural modules. When a behavioural module gives up control of the robot, the ASM
decides which behavioural module will have control next. Behavioural modules may all have equal
“weighting” or priority or, more likely, they may be arranged in a hierarchy.

“Follow white line” module

“Go towards light” module

“Random walk” module

“Obstacle avoidance” module

Action
Selection

Mechanism
(ASM)

Switch

Proposed
Actions

Sensory input
for each module

Switch control
signal

Figure 2: The Behaviour Based Approach

UFEEHE-30-1 C Programming Assignment2,

TASK 6 : Objective

3. Setting the behaviours you will Implement in an Industrial Context

Let us imagine that an industrial-scale wheeled mobile robot is to be designed to operate in a large mail
sorting office. It will tow a set of passive wheeled carts behind it (a bit like a locomotive pulling
carriages). On each cart is partially sorted mail. A human member of the sorting staff can stop the robot
at any time by putting an obstacle, such as a foot, in the path of the front “bump stops”. Whilst
stationary, the partially sorted mail on the carts can be loaded and unloaded so that the sorting process
can proceed. When the bump stop is released, the robot can continue moving as before.

During normal operation, the robot follows a white line laid out on the floor. The white line is movable
by the human operators so that they can change the route from time to time. Of course the white line
can become scuffed, damaged and obscured over time. If the robot detects that the line has
disappeared, then it is to engage in “random walk” behaviour, in search of it. However, if during this
“random walk” phase, a central bright light becomes illuminated, then it should act as a “homing
beacon” for the robot. Under these circumstances, the robot is to orient itself towards this bright light
in the centre of the sorting office and move towards it. Once the robot has reached this location, it will
encounter an obstacle that triggers its bump stops. Whilst this is not an ideal situation, this default
location is one in which the sorting process can continue when white line following has gone wrong for
a while.

If the robot re-discovers the white line, either during its “random walking”, or during its journey
towards the light, then “line following” behaviour should re-establish itself. During any of this
behaviour, if collision with an obstacle is detected, then the robot should stop moving immediately,
and stay still until that bum stop, or stops, is released.

4. Implementing the Behaviour Based Approach

It is simple to implement a system like that illustrated in figure 2, which achieves the overall behaviour
described in section-3 above on the MARCO robot, in stages. Each behavioural module can be
designed and debugged as a separate entity, without the ASM structure, i.e., with that behavioural
module having permanent control of the robot. This can be been done for each module. Next, each of
these modules can be encapsulated within a function.

Following this, a “master” function can be designed, the ASM, that calls each behavioural module and
decides what to do when a module finishes for some reason and returns to the ASM. Remember that
this could happen either because a module has no further need for control of the robot, or because the
sensory information indicates that another module urgently needs control. This can all be implemented
using a function “call and return” structure in the C programming language. Let us assume that each
behavioural module contains the code for fulfilling its purpose, including the conditions for “giving up”
control, which result in returning from the C function that implements it.

The ASM can be the main() function or part of a menu system that alternatively allows the human user
to activate each behavioural module independently.

An alternative approach is to build a “time slice” scheduler based finite state machine of behaviour
modules, although this will require some thinking as to how the scheduler can choose which behaviour
should be executed next.

UFEEHE-30-1 C Programming Assignment2,

5. In Conclusion

By stages, you can implement your version of some famous experiments from the recent history of AI
research by making use of the MARCO robots and their PC-based controllers. This is fun to do, and
will give you an insight into the important new turns that AI research has taken in recent years. This is
still a very important subject that underpins much of the current research being carried out in UWE’s
internationally renowned Intelligent Autonomous Systems Laboratory in the Du Pont building opposite
the main entrance to the University.

By the way, some of you may notice that you will be doing something in addition to the creation of a
Behaviour Based robotics control architecture. You will have begun to construct the elements of a
simpler “scheduler” for a basic multitasking operating system. Such schedulers are at the very core of
“proper” operating systems like UNIX. We have met the idea of scheduler based finite state machines
in the previous terms lectures.

Appendix D Connecting MARCO

Your project will be assessed by demonstration of your working program. The following connections
should be defined in your code as the Rack & MARCO will already be connected in this way.

RACK
Digital I/P Patch Box

MARCO RACK
Motor Drive

Patch Box MARCO

D0 SW1 Left Bumper P0 SM01 Photodiode
stepper

D1 SW2 Right Bumper P1 SM02

D2 IRSW1 IR (floor) Switch (left) P2 SM03 Motor drive and
control

D3 IRSW2 IR (floor) Switch (right) P3 SM04

D4 SMSW StepperMotor Switch (left)

D5 SMSW1 StepperMotor Switch (right) DAC Output

ADC Input CH0 (Mtr High) LDCM+ Left DC
Motor Drive

A0 ‘Y’ axis of Analog Joystick CH0 (Mtr Low) LDCM-

A1 ‘X’ axis of Analog Joystick CH1 (Mtr High) RDCM+ Right DC
Motor Drive

A3 EYE Photodiode CH1 (Mtr Low) RDCM-

UFEEHE-30-1 C Programming Assignment2,

Appendix E (Possible)Test Track

MARCO START POSITION

WHITE LINE (not necessarily straight)

LIGHT SOURCE

PHYSICAL OBSTRUCTION

UFEEHE-30-1 C Programming Assignment2,

Appendix F Marking Scheme

Demonstration (max. marks: 70)
The following points will be assessed during your demonstration. None of these marks are available
if the demonstration has not been completed. These marks should be allocated and signed off
during the demonstration.

No demonstration (-10)

User Interface (4)
 Suitable menu
 No excessive interaction
 Reporting of task in progress
 Reporting at end of task
 Other good features

Joystick Control (8)
 Calibration Method
 Forward/Back & Left/Right
 Other directions
 Proportional speed
 Control stops when line encountered.
 Records logfile (if not done for light following)

Line Following (10)
 Follows a straight line
 Follows a line with angles
 Follows a curved line
 Moves at a good speed
 Moves Smoothly
 Stops at an obstruction

Light Following (18)
 Rotate in correct direction
 Moves towards light at good speed
 Scans during movement
 Stops and scans immediately at an obstacle
 Writes a log file

Replay Path (10)
 Read log file
 Retrace path to within +/- 15 cm
 No excessive movement
 Tracks timing
 Moves smoothly

Pseudo-subsumption system (AI Execercise) (20)

 Control module
 Random walk
 Find line
 Stop at collision
 Go to light

50%

20%

UFEEHE-30-1 C Programming Assignment2,

Report marking scheme

(Maximum marks 30)

No plan (-5)
No timesheet (-5)
Not spiral bound (-5)

Overall Report Design (layout, presentation,
structure, English language) (5)
Design (system and functions including appropriate
diagrams) (7)
Discussion (5)
Conclusions/review (3)
Rodney Brooks report (5)
Appendix-1 : Program Code Listing (layout,
quality of comments, function & program headers
etc) (5)

