Programming in C - Assignment 2
Marco Programming Assignment

By Jon Ambrose (07503425) & Andrew Fester (0750) (JAAF Software)

Part 1 - MARCO

Contents

Our approach to the Marco Programming Assignment
Our design to the Marco Programming Assignment
Source Code

Testing

Conclusions/Review

Appendix: -

A plan of the Macro Programming Assignment

Timesheet

PART 2 - Research

Subsumption architectures
Augmented finite state machines

Rodney Brooks

PART 1

Marco

Our approach to the Marco Programming Assignment

Our approach will be based on a development, of a piece of software, which has many functions in it
to make it a complete piece of software.

Most of these functions will be a core part of the objective of the main program; these include: the
analogue joystick control, bumpers, brightest light following, and white line following. Some of these
functions belong to each other in terms of the white line following, and when the robot hits an
obstacle (bumpers function) it will stop. More detail of these will be stated in the finite state
diagrams in our design section.

We will develop each sub task in an individual file and make it so it works as a function. Therefore,
when we consolidate the menu in the final file, the code to copy into each case statement, will be
much simpler.

By developing the sub tasks in each of their own file, it will help to debug and stop the confusing
issues in terms of what other tasks are going to be running when the c file is complied and ran
through the marco. It also stops you getting fairly inaccurate results. It also helps because say you
have the joystick control in one file and coded each function in, when it comes to run the complied C
program you would need to calibrate the joystick each time, which could be a right pain.

By using the separate file for each function development technique it means that version control will
a lot easier to handle, because you only focus on one part of the program.

Another advantage over using separate files to code each function means you can easily test data —
i.e. read the values of the light source, whether on white line or not or joystick control etc.

Once we have developed each of the main parts of the program, these will be consolidated into one
big master file — which will be integrated via a menu in Icurses. The menu will be constructed with a
case statement. Each task will be in a separate statement, which will be linked to “Actions”. More
will be explained in the finite state diagram.

Our design to the Marco Programming Assignment

Joystick module

Read the Analogue joystick controller and look up in an array as to what values

to write to the motors.

int array [6][3] =
{
{4073, 4073, 2048}, /*{r-lfw, r-fw | r-rfw},*/
{4073, 2048, 20}, /*{r-l , r-center, r-rb },*/
{ 20, 20,2048}, /*{r-lbw, r-bw , r-rbw},*/
{2048 , 4073, 4073}, /*{l-lfw, I-fw , [-rfw},*/
{ 20, 2048, 4073}, /*{l-l , I-center, I-r }*/
{2048, 20, 20}, /*{l-lbw, I-bw , I-rbw},*/

I

Joystick left motor right motor
position
fvd flll fivd full fwd

frd rioht firll frd atan
warngnt i IWa S0P FE

right pivot full fivd full back /<T>\
back right full back ston
backright | full back stop ,
L R
back full back full back \

back left stop full back
left pivot full back full fwd B
fvd left stop full fiwd

Bumpers

Read the digital marco rack that is connected to the robot. The robots bumpers
are read by the digital device in DO (Left Bumper) and D1 (Right Bumper).

If either DO — 0x01 = =1 (AND OR) D1 - 0x02 == 2, then stop values which are
“2048” are written to the right and left motors, to make the robot stop.

White Line Follow

Read the digital inputs D2 — 0x04 (left IR) andD3 — 0x08 (right IR) which is
connected by IRSW 1 (left) and 2 (right).

These values are then integrated into a case statement to make the robot motor
values set to what IR has been triggered to make 0x04 to make it turn left and
0x08 to make it turn right.

Brightest light following

Read the digital marco rack that measures the stepper motor when it hits far left
or far right clicks. This is called the “Stepper Motor Switch — left and right”.
Stepper motor switch = D4 — 0x10 (left) 16 decimal.

Stepper motor switch = D5 — 0x20 (right) 32 decimal.

| then need to make the stepper motor move to one side (either left or right) — |
have chosen it to move all the way to the right. After this has completed |

Will put a counter in the sequence so that it measures how many counts it
makes to get to left stepper motor switch, this increments every time it goes
round the loop.

When it’s reached the left stepper motor it will go into another while loop which
will then count how many cycles it will take to get back until it reaches the right
stepper motor.

| will then compare the two counts and if they are not equal then display error
and exit.

The program will then enter another while loop and this is what will repeat it
going left to right, right to left all the time.

The next bit of code will need to determine what direction to travel in of the
sweep to go to the left switch; therefore | will be able to measure the direction
of the robot it has to go by using the counter theory. | will find out how many
cycles it takes to get one side. The direction will be calculated by doing the
cycles divided by 4.

Therefore if the current eye data (light meter) is greater than a typical high
brightness, then it will enter an if statement which will say if quad (counter) is
greater than 0 but less than 2.75 — it will go far left. And between 2.75 and 8.25
it will go straight on. If greater than that it will go right.

The above code will also be copied for the sweep to the right switch, but instead
of incrementing the counter it decrements. By doing this we are making sure the
same area is always the same motor values. Either left, forward, right.

Testing

Checking the program works with the assignment.

Conclusions/Review

We have learnt that hardware is very hard to make right all the time — different marco

robots behave differently. We have learnt that we could make our source code alot smaller, but

because we were testing the robot alot and it worked, we decided to key the source code longer.

Appendix

A plan of the Macro Programming Assignment — See attached

Timesheet
Finish
date Start Time | Time Who present Tasks done
19/04/2008 12.00 14.00 | Jon Ambrose & Andrew Fester
26/02/2008 12.00 14.00 | Jon Ambrose & Andrew Fester
04/03/2008 12.00 14.00 | Jon Ambrose & Andrew Fester | Controller
11/03/2008 11.00 17.00 | Jon Ambrose & Andrew Fester | moving the Marco
24/03/2008 11.00 17.00 | Jon Ambrose Bumpers
25/03/2008 11.00 17.00 | Jon Ambrose
26/03/2008 11.00 17.00 | Jon Ambrose Brightness light follow
27/03/2008 11.00 17.00 | Jon Ambrose
28/03/2008 11.00 17.00 | Jon Ambrose White Line Following
03/04/2008 12.00 18.00 | Andrew Fester path remembering
general program
12/04/2008 13.00 18.00 | Jon Ambrose & Andrew Fester | integration
13/04/2008 16.00 19.00 | Andrew Fester
08/04/2008 12.00 14.00 | Jon Ambrose & Andrew Fester
15/04/2008 12.00 14.00 | Jon Ambrose & Andrew Fester | Clear bugs and RTM test
16/04/2008 10.00 21.00 | Jon Ambrose & Andrew Fester
16/04/2008 21.00 24.00 | Andrew Fester
17/04/2008 0.00 7.00 | Andrew Fester
17/04/2008 12.00 - | Jon Ambrose Commenting and report
18/04/08 - 8.00

PART 2

Research

Rodney Brooks:

Rodney brooks work focused mainly on biologically inspired robotic architectures which at
the time was his argument against symbolic approaches to intelligent machines. He is responsible for
the development of Subsumption architectures and augmented finite state machines as part of the
development of his intelligent machines.

His work in robotics, first published in 1986 and subsequently elaborated upon in a series of highly
influential papers, inaugurated a fundamental shift in artificial intelligence research. Brooks has
argued strongly against symbolic processing approaches to creating intelligent machines, which had
been the focus of Al since the days of Alan Turing, directly tracing back to the work of Gottlob Frege.
Instead, Brooks has focused on biologically-inspired robotic architectures (e.g., the Subsumption
architecture) that address basic perceptual and sensorimotor tasks. These had been largely
dismissed as uninteresting by the mainstream Al community, which was far more interested in
reasoning about the real world than in interacting with it. Conversely, Brooks argued that interacting
with the physical world is far more difficult than symbolically reasoning about it.

Subsumption architectures:

This is simulating intelligent behaviour by breaking it down into lots simple behaviour
modules which are then put into layers. The higher layers of this system would work toward goals
and the further down you go the more it works like reflexes. For example | can decide to walk
somewhere but there is a complex system of muscle usage in order for me to achieve that goal.

The main argument behind the subsumption architecture is that intelligent machines would have to
be flexible. Building this intelligence from lots of small modules will, when combined allow for a
wider range of more complex tasks to be accomplished.

For example, a robot's lowest layer could be "avoid an object", on top of it would be the layer
"wander around", which in turn lies under "explore the world". Each of these horizontal layers
access all of the sensor data and generate actions for the actuators — the main caveat is that
separate tasks can suppress (or overrule) inputs or inhibit outputs. This way, the lowest layers can
work like fast-adapting mechanisms (e.g. reflexes), while the higher layers work to achieve the
overall goal. Feedback is given mainly through the environment.

2. The Behaviour Based Approach
Action
Selection
Mechanism
(ASM)
Sensory input
for each module
Switch control
signal
#I “Follow white line” module
ql “Go towards light” module
#I “Random walk™ module
#I “Obstacle avoidance” module I Proposed
Actions
Figure 2: The Behaviour Based Approach

Attributes of the architecture

The main advantages of the methodology are:

e the modularity, (an engineering technique that builds larger systems by combining smaller
subsystems)

e the emphasis on iterative development & testing of real-time systems in their target
domain, and

e the emphasis on connecting limited, task-specific perception directly to the expressed
actions that require it.

These innovations allowed the development of the first robots capable of animal-like speeds.
Main disadvantages of this model are:

e the inability to have many layers, since the goals begin interfering with each other,

e the difficulty of designing action selection through highly distributed system of inhibition
and suppression, and

e the consequent rather low flexibility at runtime.

Augmented finite state machines:

This is where the simple behaviours are hierarchically organised to allow for more complex
behaviours to develop. Timers are added to these basic Finite State Machine (FSM) to induce salient,
coherent behaviour. Inhibition and Suppression between behaviour modules provides distributed
control, and therefore this system results in Pre-wired patterns of behaviour.

http://en.wikipedia.org/wiki/Subsumption architecture

http://en.wikipedia.org/wiki/Rodney Brooks#Publications

http://ai.eecs.umich.edu/cogarch3/Brooks/Brooks AFSM.html

http://ai.eecs.umich.edu/cogarchO/subsump/method.html

